Estimating the Parameters of Degradation Models when Error Terms are Autocorrelated
نویسندگان
چکیده
منابع مشابه
Semiparametric estimation of duration models when the parameters are subject to inequality constraints and the error distribution is unknown
The parameters in duration models are usually estimated by a Quasi Maximum Likelihood Estimator [QMLE]. This estimator is efficient if the errors are iid and exponentially distributed. Otherwise, it may not be the most efficient. Motivated by this, a class of estimators has been introduced by Drost and Werker (2004). Their estimator is asymptotically most efficient when the error distribution i...
متن کاملEstimating Degradation Model Parameters from Character Images
This paper discusses the use of character images to determine the parameters of an image degradation model. The acute angles in character images provide information used to find the model parameters. Three experiments are conducted to evaluate the use of characters. In the first experiment, large quantities of corners from character images are used to investigate how their contribution affects ...
متن کاملthe effects of error correction methods on pronunciation accuracy
هدف از انجام این تحقیق مشخص کردن موثرترین متد اصلاح خطا بر روی دقت آهنگ و تاکید تلفظ کلمه در زبان انگلیسی بود. این تحقیق با پیاده کردن چهار متد ارائه اصلاح خطا در چهار گروه، سه گروه آزمایشی و یک گروه تحت کنترل، انجام شد که گروه های فوق الذکر شامل دانشجویان سطح بالای متوسط کتاب اول passages بودند. گروه اول شامل 15، دوم 14، سوم 15 و آخرین 16 دانشجو بودند. دوره مربوطه به مدت 10 هفته ادامه یافت و د...
15 صفحه اولEstimating structural VARMA models with uncorrelated but non-independent error terms
The asymptotic properties of the quasi-maximum likelihood estimator (QMLE) of vector autoregressive moving-average (VARMA) models are derived under the assumption that the errors are uncorrelated but not necessarily independent. Relaxing the independence assumption considerably extends the range of application of the VARMA models, and allows to cover linear representations of general nonlinear ...
متن کاملPenalized Regression Models with Autoregressive Error Terms
Penalized regression methods have recently gained enormous attention in statistics and the field of machine learning due to their ability of reducing the prediction error and identifying important variables at the same time. Numerous studies have been conducted for penalized regression, but most of them are limited to the case when the data are independently observed. In this paper, we study a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Austrian Journal of Statistics
سال: 2016
ISSN: 1026-597X
DOI: 10.17713/ajs.v40i3.210